If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.905x^2-20x-25=0
a = 4.905; b = -20; c = -25;
Δ = b2-4ac
Δ = -202-4·4.905·(-25)
Δ = 890.5
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-\sqrt{890.5}}{2*4.905}=\frac{20-\sqrt{890.5}}{9.81} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+\sqrt{890.5}}{2*4.905}=\frac{20+\sqrt{890.5}}{9.81} $
| -4(w-2)=7w-25 | | 7=−12b | | H-(-8)=e | | 2u=22 | | 5x-2(x+1)=23 | | 48=12x-4x | | -8=7v+9-10v | | 7-+4y=-7 | | 38x+42=50x+6 | | 3x^-6x-45=0 | | 7(x-1)-2=-3(-8x+1)-3x | | 1-2(x-1)=x | | 3(v+4)=6v+15 | | -9t+2=-10t+10 | | (7x-10)+(6x-5=180 | | 3x-5(x=5=-2+5x-15 | | 5t+14=3t-32 | | -2s-5-8s=10-5s | | -8=2(u-7)-8u | | 4x+3x=7-5 | | 4x+7=6(x-3) | | 26x=-13x | | 3-3q=-4q-7 | | 19-13z=-2-10z | | 6x-24=5x+11 | | 6r=33-5r | | (7-3t)/4=-(1t)/8 | | 17v=15v+14 | | 2x=4x=180 | | 3(5x+4)=72 | | -65+11x=125+x | | 5+3x=3(−x+4)−19 |